- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bain, Daniel J (1)
-
Hopkins, Kristina (1)
-
Moore, Joel (1)
-
O'Donnell, Emily (1)
-
Toran, Laura (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Impervious cover (IC) is a common metric for assessing the degree of urbanisation in watersheds. However, there are different methods for determining IC, and use of IC correlation with urban watershed response to hydrologic and geochemical inputs can be strongly influenced by the end members (IC below 10% and above 40%). The resolution of the imagery (e.g., 1 m vs. 30 m) used to measure IC can influence the estimate of IC, with differences up to 15% observed between these two resolutions for 21 watersheds along the east coast of the United States. The differences are greatest in the middle range between 10% and 40% IC. When using IC for correlation with urban watershed responses such as discharge flashiness or median solute concentrations, fits with R2between 0.4 and 0.78 were obtained when including end members of IC from 0% to 50%. However, when trying to distinguish behaviour between urban watersheds that fall in the middle ranges of IC, these same parameters do not correlate well with IC. Correlations fail significance tests, can switch direction, and fall below an R2of 0.1 without the end members of very low or very high IC. Because of improved accuracy, the finest resolution is preferred when available, and mixing IC estimation methods should be avoided. Furthermore, using regressions that include end members may not contribute to differentiating how IC in the 10%–40% range impacts hydrologic and geochemical responses in urban watersheds. Understanding this middle range of IC is important for comparing urban and suburban watersheds or planning watershed development to minimise impacts.more » « lessFree, publicly-accessible full text available August 1, 2026
An official website of the United States government
